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Abstract
A spheroid is an ellipsoid for which two of the axes are equal, and
here the interaction between spheroidal fullerenes and carbon nanotubes is
modeled using the Lennard–Jones potential and the continuum approximation.
The resulting surface integrals are evaluated analytically for a number of
configurations, including lying and standing as well as spheroids with an
arbitrary tilt angle, and centered on the nanotube axis. Analytical expressions
for off-axis spheroids in all three orientations are also given, and the findings
are shown to agree well with previously published work. However, the major
contribution of this work is the derivation of new exact analytical formulae to
calculate the van der Waals interaction energy for these configurations, and in
particular the results for the tilting and off-axis configurations which are far
more general than those which have appeared in the literature previously. From
these exact expressions, five primary regimes are identified: lying on-axis,
tilting on-axis, standing on-axis, standing off-axis and finally lying off-axis.
Also identified in this study is a precisely prescribed radius, for the transition
between regimes four and five, for which two equally energetically favorable
orientations exist and for which these two configurations are separated by
a known energy barrier. The notion arises that such configurations may be
exploited for nano-scaled memory devices used in nano-computing.

PACS number: 61.48.+c

1. Introduction

The discovery of carbon nanostructures has led to the possible creation of many nanodevices.
Carbon nanotubes in particular have attracted much attention due to their mechanical,
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electronic and energetics properties. One further aspect of carbon nanotubes, which is of
particular interest, is their accessible internal storage capacity via their open ends which can
be filled with other molecular structures. In [1], it was first observed that hollow nanotubes
may be filled with C60 fullerene molecules, the resulting structures being usually referred to
as nanopeapods. While earlier attention is given to C60 molecules inside the nanotubes [2],
Hodak and Girifalco [3–5], report different types of fullerene forming nanopeapods, including
C70, C78 and C80 (see, for example, [6, 7]). As mentioned in [8, 9], nanopeapods possess
potential applications as superconducting nanowires. The superiority of using nanopeapods
instead of an empty carbon nanotube to create a superconducting nanowire is because the
charge can travel not only along the tube wall, but also along the chain of fullerenes inside
the nanotube. However, Okada et al [10] find that the C60 at (10,10) peapod is a metal
with multi-carriers, each of which distributes either along the nanotube or along the chain of
fullerenes C60, while the C60 at (9,9) peapod does not exhibit this character. We also note
from Okada et al [2, 10] that the incorporation of a C60 molecule into a (10,10) nanotube is
energetically favorable, whereas this is not the case for (9,9) nanotubes due to large structural
deformation of both the tubes and the fullerenes. These results lead to the studies of energetics
and electronic structures of nanopeapods by Otani et al [11] and Okada et al [10] where a
comparison of the energies of the peapods which comprise fullerenes encapsulated in zigzag
and armchair nanotubes is made and they find that both energies exhibit qualitatively the same
characteristics. Their findings indicate that the space in the tube, which is the inter-wall spacing
between the encapsulated fullerene and the nanotube, is the crucial factor for determining
the energetics of nanopeapods and the stability of the nanopeapod system, rather than the
metallic or semiconducting characteristics or atomic arrangements of the tube. Consequently,
Otani et al [11] point out that the determination of the energetics stability of various carbon
nanopeapods can be carried out solely by consideration of the space issue. For C60-peapods,
the inter-wall spacing between the fullerene and the nanotube depends only on the radii of the
tube and the fullerene. However, for peapods with ellipsoidal fullerenes, such as C70 and C80

the inter-wall spacing is also dependent on the orientation of the fullerenes. Evidently, due to
their non-spherical structure, spheroidal fullerenes can pose different orientations inside the
nanotubes, unlike spherical fullerenes C60. This also leads to an advantage that spheroidal
fullerene peapods have over the C60-peapods, which is a capacity to control the electronic
properties of the system by simply controlling the orientations of the fullerenes [12].

In previous work [13], the present authors examined the energetic issues of spheroidal
fullerenes being accepted into carbon nanotubes, assuming that the spheroid is lying on the
nanotube axis. In the present paper, we extend this work by specifically addressing the issue of
the orientation of the spheroidal fullerenes C70 and C80 inside a single-walled carbon nanotube.
Since the chirality of the carbon nanotube does not affect either the electronic structure and
energetic properties of the nanopeapods [11] or the orientation of the spheroidal fullerenes
[14], we adopt the continuum approach for which we assume that carbon atoms are uniformly
distributed over the surface of the molecules. Thus, instead of summing the interaction
between each atom pair, the total interaction potential energy can be obtained by performing
surface integrals of a potential energy, which in this paper we adopt the classical six-twelve
Lennard–Jones potential. To predict the orientations of C70 molecules in carbon nanotubes,
the continuum approach has also been previously employed by Verberck and Michel [14]
and Chorro et al [15]. While here we assume continuity of surface density for both the
nanotube and fullerene, in [14], only the carbon nanotube is modeled as a continuum, while
the fullerene is assumed to retain its discrete atomic structure. Similarly, Chorro et al [15] also
model the nanotube as a cylinder with uniform atomic surface density. However, the fullerene
is described as generated by nine circular slices of the same linear density. We note that while
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the Lennard–Jones potential is used in the present paper and in Chorro et al [15], Verberck
and Michel [14] use the Born–Mayer–van der Waals potential. Further, we note that a number
of techniques, including electron diffraction studies [15–17] and local density approximations
[6, 10–12] have been employed in order to predict the orientation of the C70 molecules inside
carbon nanotubes.

As mentioned in [6, 11, 12, 15, 17], in a thin nanotube with approximate diameter of
13.6 Å, the fullerene C70 adopts a lying configuration, which is when the molecule’s long (or
polar) axis lays parallel to the tube central axis, and when the nanotube becomes larger
the fullerene adopts the standing configuration for which the molecule’s polar axis lays
perpendicular to the tube axis. For those tube sizes in between the two that the molecule
adopts the lying and standing arrangements, it is suggested that the molecule adopts an
intermediate state for which the angle ψ between the long axis of the fullerene and the tube
axis is between zero and π/2 radians. However, in these studies [6, 11, 12, 15, 17] the center
of the spheroidal fullerene is assumed to be located on the tube central axis. While this
assumption may be valid for a small nanotube, for a large nanotube the fullerene tends to be
offset from the tube axis and becomes closer to one side of the nanotube wall. For example,
as shown in [18, 19] in a (10,10) nanotube, the center of the C60 fullerene is on the tube axis,
whereas in a (16,16) nanotube the C60 molecule dislodges from the tube axis by 4.314 Å.
Thus, we might expect the spheroidal fullerenes to be offset from the tube central axis in a
large nanotube. Although Verberck and Michel [14] allow the center of the C70 molecule to
be off-axis, they consider only the cases when the angle ψ = 0 and π/2, which corresponds
to the lying or standing arrangements, respectively. In this paper, allowing the molecule to
be off-axis we do not make this restriction of fixing the angle ψ for the offset molecule, and
consequently the orientations of the spheroidal fullerenes obtained here are the true minimum
energy configuration of the fullerenes inside the nanotubes.

In the following section, we describe the method used to calculate the results contained
in this paper and then in section 3 we present the results for spheroidal fullerenes interacting
with flat graphene, and then carbon nanotubes, both when the spheroid is centered on the
nanotube axis and when the spheroid is offset from the nanotube axis by some distance ε. In
section 4, we then summarize these results and provide a description of five regimes which
exist depending on the particular fullerene and the radius of the nanotube in question. Ten
appendices are included in which the full mathematical derivations of the analytical expressions
used in these calculations are presented. In appendix A an expression is derived for a point
interacting with a graphitic plane, which is followed by appendices B and C which extend this
result for spheroidal fullerenes in the lying and standing orientations, respectively. Similarly,
appendix D provides a general result for a point and a carbon nanotube, and this result is
extended to on-axis lying, standing and tilting fullerenes in appendices E, F and G, respectively.
Finally, appendices H, I and J deal with analytical expressions for lying, standing and tilting
fullerenes which are not centered on the nanotube axis. We comment that the extensive
computations undertaken here are facilitated by the use of the explicit formulae which are
derived in the appendices. To generate the equivalent data using either molecular dynamics
simulation or other computational schemes would require considerably more computational
effort than that involved here.

2. Method

In this paper, we calculate the interaction energy of the fullerenes C70 and C80 using the various
expressions given in the appendices of this paper. This is done first for those systems when
the fullerene is interacting with graphene, because this interaction energy represents a limiting

3



J. Phys. A: Math. Theor. 41 (2008) 235209 B J Cox et al

Table 1. Constants used in the model.

Mean surface density for graphene ηg = 0.3812 Å−2

C70 equatorial semi-axis length b = 3.59 Å
C70 polar semi-axis length c = 4.17 Å
Mean surface density for fullerene C70 η70 = 0.3896 Å−2

C80 equatorial semi-axis length b = 3.58 Å
C80 polar semi-axis length c = 4.73 Å
Mean surface density for fullerene C80 η80 = 0.4072 Å−2

Attractive constant A = 17.4 eV × Å6

Repulsive constant B = 29 × 103 eV × Å12

case of the interaction with a carbon nanotube in the limit of a very large radius. Following
this we investigate those cases when the fullerene is fully encapsulated within a nanotube.
First, in the case when the fullerene is centrally located on the axis of the nanotube, and then
we examine those cases with the fullerene free to move off the nanotube axis.

Throughout this paper, we use those values for the attractive and repulsive constants as
given by Girifalco et al [20] and the dimensions of the C70 and C80 fullerenes are taken from
Nakao et al [21], where we choose the C80 isomer with D5d symmetry since it possesses
the most spheroidal shape. We comment that the analysis presented here is valid for any
spheroidal fullerene and not limited to these two molecules. The values of these constants
are given in table 1. The numerical evaluation is performed with MAPLE using the function
to evaluate the usual hypergeometric functions. The evaluation of the Appell’s functions is
facilitated by using the series expansion (30) contained in Burchnall and Chaundy [22].

3. Numerical results

3.1. Interaction of spheroidal fullerene with flat graphene

In this section, we investigate the minimum energy configuration of spheroidal fullerenes
with a flat plane of graphene. We utilize the expressions derived in appendices B and C to
determine the energy which the fullerene interacts with a sheet of graphene and this calculation
serves two purposes. First, this expression can be used to determine the interaction energy for
fullerenes and graphene and by an appropriate sum, graphite. Second, the primary purpose of
this paper is to determine those configurations of fullerenes in carbon nanotubes, and the limit
as the tube radius goes to infinity is that of a flat graphene plane.

In figure 1, we show the interaction energies for C70 and C80 fullerenes and a single
graphene sheet. These are calculated using the expressions for Egl given in equations (B.1)
and (B.2) and Egs given in equations (C.1) and (C.4). We see that in both cases the standing
orientation is energetically favored at a distance but as the fullerene approaches the graphene
sheet, the lying configuration begins to take over and the global minimum occurs for the lying
configuration. For the C70 this value is −0.849 eV which occurs at a distance of 6.56 Å. In
the case of the C80 fullerene this global minimum has a value of −0.980 eV which occurs at a
distance of 6.55 Å. If we consider just the standing orientation then the C70 fullerene obtains
a global minimum energy of −0.717 eV at an offset distance of 7.11 Å, and for the C80, this
minimum value is −0.709 eV which is present for an offset distance of 7.66 Å.

3.2. Interaction of an axially centered spheroidal fullerene with a carbon nanotube

In this section, we investigate the various orientations of a single spheroidal fullerene inside
an infinite carbon nanotube with the center of the spheroid lying on the axis of the nanotube.
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Figure 1. Interaction energy between graphene and fullerenes, both lying in Egl and standing in
Egs configurations.
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Figure 2. Interaction energy between carbon nanotube and axially centered fullerene, both lying
in Etla and standing in Etsa configurations.

As we show in the following section, centrally located fullerenes are applicable for a large
range of nanotube radii because the nanotube axis is the equilibrium location for the fullerene.

In figure 2, we show the interaction energies for axially centered spheroids in either the
lying Etla or the standing Etsa orientations, using the expressions derived in appendices E and
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Figure 3. Interaction energy between carbon nanotube and an axially centered fullerene C70 tilting
at an angle ψ to the nanotube axis.

F, respectively. As expected, the lying orientation is favored for smaller radius nanotubes,
with the lying orientation resulting in an interaction energy of −3.792 eV for a C70 fullerene
in a nanotube of radius 6.83 Å, and an interaction energy of −4.376 eV for a C80 fullerene
encapsulated in a nanotube with a radius of 6.82 Å. For the standing orientation, the interaction
energy reaches an extremum of −3.361 eV for a C70 fullerene inside a tube of radius 7.19 Å,
and an extremum of −3.228 eV for a C80 fullerene within a nanotube of radius 7.66 Å.

From figure 2 it is clear that the lying configuration is favored for tubes below some
threshold and the standing configuration is favored for tubes with a radius higher than this
threshold. However, it is not expected that as the tube radius increases that the orientation
would switch between these two possibilities. The expected behavior is that the spheroid
would begin to tilt at some stage, and then make a smooth transition between the two extreme
orientations. To examine this behavior we determine the minimum energy level for an axially
centered fullerene with arbitrary tilt angle ψ . In figures 3 and 4, we note that the tilt angle ψ

which leads to the least energy configuration for an axially centered spheroid varies smoothly
from 0 to π/2 radians. For the C70 fullerene (as shown in figure 3), the fullerene begins tilting
for a nanotube of radius 6.94 Å and then follows an approximately inverse-sine curve until
a radius of 7.38 Å is reached when the spheroid is in the standing orientation. For the C80

fullerene (shown in figure 4) the same inverse-sine-like curve is shown between the nanotube
radii values of 6.94 Å and 7.85 Å. This larger domain is expected and is due to the longer
polar axis for this molecule.

3.3. Interaction of an axially offset spheroidal fullerene with a carbon nanotube

In this section, we investigate the various orientations of a single spheroidal fullerene inside
an infinite carbon nanotube when the center of the spheroid lies off the axis of the nanotube.
The offset issue becomes particularly important as the radius of the nanotube increases. This
is because the equilibrium position for the fullerene is no longer on the axis of the nanotube,
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Figure 4. Interaction energy between carbon nanotube and an axially centered fullerene C80 tilting
at an angle ψ to the nanotube axis.
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Figure 5. Offset distance ε and interaction energy Etlo for a carbon nanotube and an offset
fullerene C70 and C80 in a lying orientation.

and in order to assume a minimum energy configuration, the spheroid must move off-axis and
adopt a location which is closer to the nanotube wall.

In figure 5, we show the offset ε and the resulting interaction energy Etlo for spheroidal
fullerenes C70 and C80 in a lying orientation, which are computed from the expressions
derived in appendix H. The equilibrium offset position ε for the two fullerenes are almost
indistinguishable, with the fullerene beginning to move off the nanotube axis when the tube
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Figure 6. Offset distance ε and interaction energy Etlo for a carbon nanotube and an offset
fullerene C70 and C80 in a standing orientation.

radius exceeds 7.28 Å and initially it moves off the axis quite abruptly and quickly adopts a
linear relationship with ε ≈ a − 6.55, remembering that 6.55 Å is the equilibrium distance we
calculate for a lying fullerene and flat graphene.

Figure 6 shows the equilibrium offset ε and resulting interaction energy Etso for spheroidal
fullerenes C70 and C80 in a standing orientation calculated from the expressions given in
appendix I. In this case, the offset positions for the two different types of fullerenes are
clearly distinct owing to the variation in polar axis length between the two molecules. The
C70 fullerene begins to move off-axis once the nanotube radius exceeds 7.75 Å, and again it
shows an abrupt movement off-axis which quickly settles down to an approximately linear
relationship with the nanotube radius. That is ε ≈ a − 7.11, and we comment that 7.11 Å
is the equilibrium distance calculated earlier for graphene and a C70 fullerene in a standing
orientation. Similarly, the C80 fullerene abruptly moves to an off-axis position once the radius
exceeds 8.25 Å, and also quickly settles down to the linear relationship with nanotube radius
ε ≈ a − 7.66, which is again consistent with the equilibrium distance for flat graphene.

We now consider the equilibrium position of spheroidal fullerenes when the molecule
is simultaneously allowed to move off-axis and also tilt in the direction of the displacement.
As shown in figures 5 and 6 the lowest energy configuration for a C70 fullerene begins as
standing on-axis and then moves to standing off-axis. As the nanotube radius approaches
approximately 8 Å the lying off-axis begins to provide a lower interaction energy, so that
perhaps there is a tilting off-axis configuration in this transition range which the molecule
prefers to adopt. Using the expression for tilting offset fullerenes derived in appendix J, we
examine the interaction energy Etto for various offset distances ε and tilt angles ψ which
are shown in figure 7. This plot shows that the lying and standing orientations both provide
independent stable equilibrium orientations for this configuration. The depth of the well
in both cases is approximately −2.32 eV and the offset positions are 0.65 Å for the lying
orientation and 1.28 Å for the standing orientation. As a measure of the stability of these
equilibrium positions we examine the depth of the highest point connecting these two wells.
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Figure 8. Contour plot of interaction energy Etto for a C80 fullerene for a 8.3 Å radius nanotube,
showing two distinct and approximately equal local minima.

It can be seen from the plot that this occurs at a depth of −2.29 eV and therefore the effective
depth separating the two minima is approximately 0.03 eV.

In figure 8, we plot the interaction energy Etto for a C80 fullerene and a carbon nanotube of
radius 8.3 Å. This plot also shows two approximately equal equilibrium positions each with a
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Figure 9. Overview plot of the various orientations for a C70 fullerene with five primary regimes
identified. Note that in the vicinity of the critical radius of 8 Å two orientations are possible.
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Figure 10. Overview plot of the various orientations for a C80 fullerene with five primary regimes
identified. Note that in the vicinity of the critical radius of 8.3 Å two orientations are possible.

well depth of approximately −2.43 eV for the lying orientation and −2.44 eV for the standing
orientation. These occur at an offset ε of 0.29 Å in the case of the standing orientation and
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Table 2. Ranges of nanotube radii for C70 and C80 fullerenes in all identified regimes.

C70 fullerene C80 fullerene
Regime Configuration Tube radius (a) [Å] Tube radius (a) [Å]

1 Lying on-axis 6.32–6.94 6.32–6.94
2 Tilting on-axis 6.94–7.38 6.94–7.85
3 Standing on-axis 7.38–7.75 7.85–8.25
4 Standing off-axis 7.75–8.00 8.25–8.30
5 Lying off-axis 8.00–∞ 8.30–∞

1.62 Å for the lying orientation. We again examine the least energy path connecting these two
configurations and find that in this case this occurs at a depth of approximately −2.34 eV. This
leads to an effective well depth of approximately 0.09 eV, which is three times deeper than in
the C70 case and it can be attributed to the increased eccentricity of this molecule.

4. Conclusions

In this paper using analytical expressions derived in the appendices, we examine various
orientations of spheroidal fullerenes interacting with graphene sheets and carbon nanotubes.
When the fullerenes are fully encapsulated in carbon nanotubes we find that the equilibrium
orientation depends primarily on the radius of the nanotube in question and five main regimes
are identified. For small radii nanotubes, the fullerene adopts a lying orientation, which we
designate as the first regime. As the radius increases the fullerene enters a second regime
such that it begins to tilt until it has adopted a standing orientation which is still centered on
the nanotube axis, and which we identify as the third regime. Following this transition, as
the radius continues to increase, the fullerene adopts an off-axis location while maintaining a
standing orientation, which we call the fourth regime. As the radius continues to increase a
second equilibrium position becomes available to the molecule which is the lying and offset
configuration, and for a critical range of nanotube radii these two configurations co-exist and
are of comparable well-depth. However, as the radius continues to increase the depth of the
standing orientation weakens as compared to that of the lying configuration, and the lying
configuration dominates, as in the case of flat graphene, and this is referred to as the fifth and
final regime.

As summarized in figure 9 for the C70 fullerene, the lying on-axis configuration is favored
for radii less than 6.94 Å, a tilting orientation is adopted for radii in the range 6.94–7.38 Å. A
standing on-axis configuration dominates for the nanotube radii in the range 7.38–7.75 Å. For
radii greater than 7.75 Å the C70 molecule adopts an off-axis configuration. The orientation
of the fullerene relative to the nanotube axis in this region again depends on radius. For
nanotube radii of less than 8 Å the standing orientation is favored, but as the critical radius of
8 Å is reached a second equilibrium orientation is available to the molecule with an effective
well-depth of 0.03 eV separating these two configurations. For nanotubes of radii in excess
of 8 Å the standing orientation becomes less favored and the lying configuration dominates.
This branching between distinct minima solutions accounts for the discontinuity in gradient
at the critical radius value.

In figure 10, we also present a similar picture for the C80 molecule with a lying
configuration for nanotubes of radii less than 6.94 Å, a tilting orientation in the range 6.94–
7.85 Å and a standing orientation in the range 7.85–8.25 Å. For nanotubes of radii greater than
8.25 Å an offset configuration is favored, and the orientation which is preferred is standing

11
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for radii less than 8.3 Å and the lying orientation for radii in excess of this value. For radii
in the vicinity of this critical value of 8.3 Å two minimum configurations exist, both lying
and standing separated by an effective well-depth of approximately 0.09 eV. As before, the
branching between distinct minima solutions at the critical nanotube radius is the reason for
the discontinuity in the gradient at this point.

The general results of this paper are summarized in table 2 and show good agreement
with the results of Verberck and Michel [14] in terms of when the initiation of the intermediate
tilting orientation. However, we find that this regime persists to a radius of 7.38 Å, whereas
Verberck and Michel [14] find that a standing orientation is adopted once a radius of 7.2 Å is
reached. The results for the lying and standing offset orientations presented in figures 5 and
6 agree very well with the same configurations in Verberck and Michel [14]. The results for
C70 also agree well with the findings of Okada et al [6], who report that C70 molecules lie in
a (17,0) nanotube with radius of approximately 6.6 Å, but stand in a (19,0) nanotube with a
radius of approximately 7.4 Å. Likewise, Khlobystov et al [12] find that C70 molecules lie in
a (10,10) nanotube with a radius of 6.78 Å and stand within an (11,11) nanotube with a radius
of 7.46 Å, which again agrees well with the results presented here.

The significance of the present work is the derivation of the analytical expressions
contained in the appendices which provide explicit formulae to calculate the energy of
spheroidal fullerenes and nanotubes. Also of importance is the treatment of the tilting and
offset configurations detailed in appendix J which evaluates integrals for a more general
problem than has appeared previously, and does so without requiring any approximations or
numerical integration methods. However, perhaps the most interesting result of this work is
the finding that there exits two equally dominate local minima for certain critical radii, that is
8 Å for C70 molecules and 8.3 Å for C80 molecules. These configurations provide a situation
such that the fullerene may adopt a lying or standing orientation with some known energy
barrier standing between each state. This may provide configurations which may be exploited
for a nano-computing memory device.
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Appendix A. Interaction of a plane with an arbitrary point

In this appendix, we derive an expression for the interaction of an infinite plane graphene
sheet with a single point. The resulting expression is the starting point for the following two
appendices which calculate the interaction for spheroidal surfaces in either a lying or standing
orientation. We begin by adopting a three-dimensional Cartesian coordinate system (x, y, z),
in which the plane is taken to be the xy-plane and the interacting point is taken to lie on
the z-axis at a position ρ units from the origin, i.e. (0, 0, ρ). We employ the Lennard–Jones
potential function and we define the total interaction potential Egp(ρ) between the plane and
the point by

Egp(ρ) = ηg (−AC3 + BC6) , Cn =
∫ ∞

−∞

∫ ∞

−∞
(x2 + y2 + ρ2)−n dx dy,

where ηg is the atomic number density of the carbon atoms making up the graphene sheet, and
A and B are the attractive and repulsive constants of the Lennard–Jones function, respectively.

12



J. Phys. A: Math. Theor. 41 (2008) 235209 B J Cox et al

We comment that, as expected this integral is singular if and only if ρ = 0. By employing the
substitution y =

√
x2 + ρ2 tan χ , the integral Cn becomes

Cn =
∫ π/2

−π/2
cos2n−2 χdχ

∫ ∞

−∞
(x2 + ρ2)1/2−n dx

= 22−2nπ

(
2n − 2

n − 1

) ∫ ∞

−∞
(x2 + ρ2)1/2−n dx.

Now we employ the substitution x = ρ tan ϕ which gives

Cn = (2ρ)2−2nπ

(
2n − 2

n − 1

)∫ π/2

−π/2
cos2n−3 ϕ dϕ = π

n − 1
ρ2−2n,

which allows us to simply express the interaction between a point and a plane as given by

Egp(ρ) = πηg

(
− A

2ρ4
+

B

5ρ10

)
. (A.1)

We comment that (A.1) is used as the starting point for the following two appendices.

Appendix B. Interaction of a plane with a lying spheroid

In this appendix, we take equation (A.1) and use it to derive an expression for the total
interaction energy Egl , for a spheroidal fullerene and a graphene plane, when the polar axis of
the spheroid is parallel to the plane but offset by some distance ε. This enables us to prescribe
the location of an element on the surface of the spheroid with the following parametric
equations

x = c cos φs, y = b sin θs sin φs, z = ε + b cos θs sin φs,

where b is the equatorial semi-axis length, c is the polar semi-axis length, −π < θs � π , and
0 � φs � π . Since we take the graphene plane to be infinite in both directions we can ignore
the x and y distances and simply integrate the z distance over the surface of the spheroid. Thus
we can write the energy as

Egl = ηs

∫ π

0

∫ π

−π

Egp(ε + b cos θs sin φs)b sin φs

√
b2 cos2 φs + c2 sin2 φs dθs dφs,

where ηs is the atomic surface density for the spheroid. By substituting (A.1) and
rearrangement we can express this as

Egl = πηgηsbc

(
−A

2
D2 +

B

5
D5

)
,

(B.1)
Dn =

∫ π

−π

∫ π

0
(ε + b sin φs cos θs)

−2n sin φs(1 − e2 cos2 φs)
1/2 dφs dθs,

where e2 = 1 − (b/c)2 is the usual squared elliptical eccentricity. First, we consider the θs

integral noting that we can write this in the form

Dθ =
∫ π

−π

(ε + b sin φs − 2b sin φs sin2(θs/2))−2n dθs.

Making the substitution t = sin2(θs/2) and by splitting the integration interval into two, and
adding together yields

Dθ = 2(ε + b sin φs)
−2n

∫ 1

0
t−1/2(1 − t)−1/2

(
1 − 2b sin φs

ε + b sin φs

t

)−2n

dt.

13
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We note that this is the fundamental integral form for the standard hypergeometric function
F(α, β; γ ; z), with α = 2n, β = 1/2, γ = 1 and z = 2b sin φs/(ε + b sin φs), which allows
us to express Dθ exactly as

Dθ = 2π(ε + b sin φs)
−2nF (2n, 1/2; 1; 2b sin φs/(ε + b sin φs)).

Here we employ the identity that F(α, β; γ ; z) = (1 − z)−βF (γ − α, β; γ ; z/(z − 1)), which
gives

Dθ = 2π(ε + b sin φs)
1/2−2n(ε − b sin φs)

−1/2

×F(1 − 2n, 1/2; 1;−2b sin φs/(ε − b sin φs)),

and since 1 − 2n is a negative integer, this can be written as a terminating series containing
2n terms as

Dθ = 2π(ε + b sin φs)
1/2−2n

2n−1∑
m=0

(1 − 2n)m(1/2)m(−2b sin φs)
m

(m!)2(ε − b sin φs)1/2+m
,

and we note that (x)n is the usual Pochhammer symbol defined by (x)n = 
(x + n)/
(x).
We now use the identities that

(−1)m(1 − 2n)m = (2n − 1)!

(2n − 1 − m)!
,

when m � 2n − 1 and (1/2)m = (2m)!/(22mm!) which yields

Dθ = 2π(ε + b sin φs)
1/2−2n

×
2n−1∑
m=0

(
2n − 1

m

)(
2m

m

) (
b

2

)m

sinm φs(ε − b sin φs)
−1/2−m,

and therefore the total integral Dn is given by

Dn = 2π

2n−1∑
m=0

(
2n − 1

m

) (
2m

m

) (
b

2

)m

Dφ,

Dφ =
∫ π

0
sinm+1 φs(ε

2 − b2 sin2 φs)
1/2−2n(ε − b sin φs)

2n−m−1(1 − e2 cos2 φs)
1/2 dφs.

We now expand the (ε − b sin φs)
2n−m−1 term as a binomial expansion to give

Dφ = (ε2 − b2)1/2−2n

2n−m−1∑
p=0

(−1)p
(

2n − m − 1

p

)
ε2n−m−p−1bpDφ�

Dφ� =
∫ π

0
sinm+p+1 φs(1 + λ cos2 φs)

1/2−2n(1 − e2 cos2 φs)
1/2 dφs,

where λ = b2/(ε2 − b2). Bisecting the interval and substituting u = cos2 φs produces

Dφ� =
∫ 1

0
u−1/2(1 − u)(m+p)/2(1 + λu)1/2−2n(1 − e2u)1/2 du,

which is now in fundamental integral form for an Appell’s hypergeometric function of two
variables F1(α, β, β ′, γ ; x; y) and in this case, α = 1/2, β = 2n − 1/2, β ′ = −1/2, γ =
(m+p+3)/2, x = −λ and y = e2. The co-efficient of the function is C = 
(α)
(γ −α)/
(γ )

which when we make the substitution q = (m + p + 1)/2 becomes

C = 
(1/2)
(q + 1/2)


(q + 1)
.

14
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Employing Legendre’s duplication formula we can write C as

C = 
(1/2)2
(2q + 1)

22q
(q + 1)2
= π

22q

(
2q

q

)
,

and therefore

Dφ� = π

2m+p+1

(
m + p + 1

(m + p + 1)/2

)
×F1(1/2, 2n − 1/2,−1/2, (m + p + 3)/2;−λ, e2),

which now enables us to write the full analytical expression for Dn as

Dn = π2ε2n−1(ε2 − b2)1/2−2n

2n−1∑
m=0

(
2n − 1

m

)(
2m

m

) (
b

4ε

)m

×
2n−m−1∑

p=0

(−1)p
(

2n − m − 1

p

)(
m + p + 1

(m + p + 1)/2

) (
b

2ε

)p

×F1(1/2, 2n − 1/2,−1/2, (m + p + 3)/2;−b2/(ε2 − b2), e2). (B.2)

Appendix C. Interaction of a plane with a standing spheroid

In this appendix, we employ equation (A.1) to derive an expression for the total interaction
energy Egs , for a spheroidal fullerene and a graphene plane, for which the polar axis of the
spheroid is perpendicular to the plane and the center of the spheroid is offset by some distance
ε. As before we use the parametric form of the spheroidal surface as

x = b cos θs sin φs, y = b sin θs sin φs, z = ε + c cos φs,

where b is the equatorial semi-axis length, c is the polar semi-axis length, −π < θs � π , and
0 � φs � π . As in appendix B we can ignore the x and y distances and simply integrate the z

distance over the surface of the spheroid, and thus the energy is given by

Egs = ηs

∫ π

0

∫ π

−π

Egp(ε + c cos φs)b sin φs

√
b2 cos2 φs + c2 sin2 φs dθs dφs,

where ηs is the atomic surface density for the spheroid. By substituting (A.1) and
rearrangement we can express this as

Egs = πηgηsbc

(
−A

2
G2 +

B

5
G5

)
,

(C.1)
Gn =

∫ π

−π

∫ π

0
(ε + c cos φs)

−2n sin φs(1 − e2 cos2 φs)
1/2 dφs dθs,

where, as before, e2 = 1 − (b/c)2 is the squared elliptical eccentricity. We note that
the integrand in this case does not depend on θs enabling the integration to be performed
immediately. The remaining integral can then be rearranged to yield

Gn = 2π

∫ π

0
(ε2 − c2 cos2 φs)

−2n(ε − c cos φs)
2n sin φs(1 − e2 cos2 φs)

1/2 dφs,

so that by expanding (ε − c cos φs)
2n as a binomial gives

Gn = 2πε−2n

2n∑
m=0

(−1)m
(

2n

m

)(c

ε

)m

Gφ, (C.2)
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Gφ =
∫ π

0
sin φs cosm φs

[
1 − c2

ε2
cos2 φs

]−2n

(1 − e2 cos2 φs)
1/2 dφs. (C.3)

The next observation is that by bisecting the interval of integration and making the substitution
φ� = π − φs we find that Gφ = 0 when m is odd. Therefore we replace m → 2m in (C.2)
and (C.3) which gives

Gn = 2πε−2n

n∑
m=0

(
2n

2m

)(c

ε

)2m

Gφ,

Gφ =
∫ π

0
sin φs cos2m φs

(
1 − c2

ε2
cos2 φs

)−2n

(1 − e2 cos2 φs)
1/2 dφs.

Bisecting the interval of integration and substituting u = cos2 φs yields

Gφ =
∫ 1

0
um−1/2

(
1 − c2

ε2
u

)−2n

(1 − e2u)1/2 du,

which is the fundamental integral form for the Appell’s hypergeometric function
F1(α, β, β ′, γ ; x, y) with α = m+1/2, β = 2n, β ′ = −1/2, γ = m+3/2, x = c2/ε2, y = e2.
In this case the, coefficient C is given by

C = 
(m + 1/2)
(1)


(m + 3/2)
= 2

2m + 1
,

which lets us give the total expression for Gn in the following way:

Gn = 4πε−2n

n∑
m=0

(2n)!

(2m + 1)!(2n − 2m)!

(c

ε

)2m

×F1(m + 1/2, 2n,−1/2,m + 3/2; (c/ε)2, 1 − (b/c)2). (C.4)

Appendix D. Interaction of a carbon nanotube with an arbitrary point

We begin by deriving an expression for the interaction of an infinite carbon nanotube with an
arbitrary point. The resulting expression becomes the starting point for all other interaction
energies since it is integrated over the surface of the interacting fullerene. The surface of the
carbon nanotube in Cartesian coordinates is given by the following parametric form:

x = a cos θt , y = a sin θt , z = zt ,

where a is the radius of the carbon nanotube, −π < θt � π and −∞ < zt < ∞. As the tube
is doubly infinite and radially symmetric we can assume, without loss of generality, that the
point P of interaction is fully prescribed by a distance ρ from the z-axis and is given by the
coordinates P = (ρ, 0, 0). We define r to the distance from P to a typical point on the surface
of the nanotube and therefore we may write

r = [(a cos θt − ρ)2 + a2 sin2 θt + z2
t ]1/2,

and by employing the Lennard–Jones potential function we have that the interaction potential
Etp(ρ) between the tube and any point is given by

Etp(ρ) = ηt (−AH3 + BH6), Hn = a

∫ π

−π

∫ ∞

−∞
r−2n dzt dθt ,

where ηt is the atomic surface density for the carbon nanotube, and A and B are the Lennard–
Jones constants of attraction and repulsion, respectively.
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We begin by defining λ2 = (a cos θt −ρ)2 +a2 sin2 θt , and then by making the substitution
zt = λ tan χ , we obtain the integral

Hn = a

∫ π/2

−π/2
cos2(n−1) χdχ

∫ π

−π

λ1−2n dθt ,

and the χ integral can be performed immediately using Gradshteyn and Ryzhik [23, equation
3.621(3)], which we rearrange to yield

Hn = πa(2n − 2)!

22n−2[(n − 1)!]2

∫ π

−π

λ1−2n dθt .

We now consider the θt integral which we denote by Hθ,n and we rearrange λ to give

Hθ,n =
∫ π

−π

[(a − ρ)2 + 4aρ sin2(θt/2)]1/2−n dθt .

By splitting the interval and making the substitution t = sin2(θt/2) we may write

Hθ,n = 2(a − ρ)1−2n

∫ 1

0
t−1/2(1 − t)−1/2{1 + [4aρ/(a − ρ)2]t}1/2−n dt,

and this is the fundamental integral form for the standard hypergeometric function
F(α, β; γ ; z), which yields

Hθ,n = 2π(a − ρ)1−2nF (n − 1/2, 1/2; 1;−4aρ/(a − ρ)2),

and we note that in this case the hypergeometric function has the form F(α, β; 2β; z) and
therefore admits a quadratic transformation [24, section 2.11, equation (31)] which gives

Hθ,n = 2πa1−2nF (n − 1/2, n − 1/2; 1; ρ2/a2),

which we also note can be expanded as the series

Hθ,n = 2πa1−2n

∞∑
m=0

(
ρm(n − 1/2)m

amm!

)2

,

where again (x)n = 
(x+n)/
(x) is the Pochhammer symbol. From the Legendre duplication
formula we may show that


(n − 1/2) = π1/2
(2n − 1)

22n−2
(n)
,

and therefore

(n − 1/2)m = 
(n + m − 1/2)


(n − 1/2)
= 
(2n + 2m − 1)
(n)

22m
(n + m)
(2n − 1)

= (n − 1)!

(2n − 2)!
· (2n + 2m − 2)!

22m(n + m − 1)!
.

Substituting this term allows further simplification such that the total term Hn can be expressed
simply as

Hn = 8π2a2

(2a)2n(2n − 2)!

∞∑
m=0

(
ρm(2n + 2m − 2)!

(4a)mm!(n + m − 1)!

)2

. (D.1)

We comment that (D.1) is the starting point of all subsequent integral evaluations analyzed in
these appendices. Since we take the tube radius a to be fixed, the only terms requiring further
integration are those involving ρ which means that we are required to integrate functions of
the form ρ2m, where m is a non-negative integer.
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Appendix E. Interaction with a lying and axially centered spheroid

In this appendix, we take equation (D.1) and use it to derive an expression for the interaction
energy for a spheroidal fullerene inside an infinitely long carbon nanotube with the polar axis
of the spheroid collinear with the nanotube axis. This means that we can prescribe the location
of an element on the surface of the spheroid with the following parametric equations

x = b cos θs sin φs, y = b sin θs sin φs, z = c cos φs,

where b is the equatorial semi-axis length, c is the polar semi-axis length, −π < θs � π ,
and 0 � φs � π . Since we are considering an infinite nanotube the z-coordinate is of no
consequence and we need only consider the perpendicular displacement from the z-axis, and
in this case ρ = b sin φs . Therefore, using the expression for Etp(ρ) from appendix D we can
state the interaction energy Etla for a lying spheroid to be given by

Etla = ηs

∫ π

0

∫ π

−π

Etp(ρ)b sin φs(b
2 cos2 φs + c2 sin2 φs)

1/2 dθs dφs,

where ηs is the atomic surface density for the spheroidal fullerene. We note that the integrand
does not depend on θs and therefore we can immediately evaluate this to give

Etla = 2πbcηs

∫ π

0
Etp(ρ) sin φs{1 − [(c2 − b2)/c2] cos2 φs}1/2 dφs.

Substituting for Etp(ρ) and expanding gives

Etla = 16π3a2bcηtηs(−AI3 + BI6),

In = 1

(2a)2n(2n − 2)!

∞∑
m=0

(
bm(2n + 2m − 2)!

(4a)mm!(n + m − 1)!

)2

Iφ,m,

Iφ,m =
∫ π

0
(sin2 φs)

m+1/2{1 − [(c2 − b2)/c2] cos2 φs}1/2 dφs.

Now by using the substitution t = cos2 φs we deduce

Iφ,m =
∫ 1

0
t−1/2(1 − t)m{1 − [1 − (b/c)2]t}1/2 dt,

which is in fundamental integral form for the usual hypergeometric function and therefore

Iφ,m = 22m+1(m!)2

(2m + 1)!
F(−1/2, 1/2;m + 3/2; 1 − (b/c)2),

where we have again used the Legendre duplication formula to express the coefficient in terms
of simple factorial terms. In this paper, we evaluate the hypergeometric functions using the
numerical package MAPLE. However, we comment that the argument of the hypergeometric
function is the eccentricity squared e2 = 1− (b/c)2, and for cases when the eccentricity is low
(such as the with the C70 and C80 fullerenes of interest here), then the series expansion of this
function converges quickly. In the special case of eccentricity e = 0, then the hypergeometric
function takes the value of unity.

Appendix F. Interaction with a standing and axially centered spheroid

In this appendix, we proceed as in appendix E, except that instead of the spheroidal polar axis
lying on the z-axis, it lies perpendicular to it. In this case, the parametric equations for the
surface of the spheroid are given by

x = b cos θs sin φs, y = c cos φs, z = b sin θs sin φs,
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where, as before, −π < θs � π and 0 � φs � π . In this case ρ2 = b2 cos2 θs sin2 φs +
c2 cos2 φs , which leads to slightly more complicated expressions to integrate. Using the
expression for the interaction of a nanotube and a point Etp(ρ) derived in appendix D the
interaction energy for a nanotube and a standing spheroid is given by

Etsa = ηs

∫ π

0

∫ π

−π

Etp(ρ)b sin φs(b
2 cos2 φs + c2 sin2 φs)

1/2 dθs dφs,

but in this case the θs integration is by no means trivial. We define this integration by

Jθ,m =
∫ π

−π

(b2 cos2 θs sin2 φs + c2 cos2 φs)
m dθs,

which we rearrange to become

Jθ,m = c2m cos2m φs

∫ π

−π

(1 + (b/c)2 tan2 φs cos2 θs)
m dθs,

and substituting t = cos2 θs yields

Jθ,m = 2c2m cos2m φs

∫ 1

0
t−1/2(1 − t)−1/2(1 + (b/c)2 tan2 φst)

m dt,

which again is in the fundamental integral form for the usual hypergeometric function. We
can therefore write this as

Jθ,m = 2πc2m cos2m φsF

(
−m, 1/2; 1;− b2 sin2 φs

c2 cos2 φs

)
.

We note that −m is a negative integer and therefore the hypergeometric function can be
expanded as a terminating series, which can be written as

Jθ,m = 2πc2m cos2m φs

m∑
k=0

(−m)k(1/2)k

(k!)2
(−1)k

(
b sin φs

c cos φs

)2k

.

Now by substituting (1/2)k = (2k)!/(22kk!) and when k � m then (−1)k(−m)k =
m!/(m − k)!, we derive

Jθ,m = 2πc2m cos2m φs

m∑
k=0

m!(2k)!

22k(m − k)!(k!)3

(
b sin φs

c cos φs

)2k

,

and we note that the factorial terms can be also expressed as a product of two binomial terms,
thus

Jθ,m = 2πc2m cos2m φs

m∑
k=0

(m

k

)(
2k

k

)(
b sin φs

2c cos φs

)2k

,

which is the form we use for the remainder of this appendix. We may now write the total
interaction energy as

Etsa = 16π3a2bcηtηs(−AJ3 + BJ6),

Jn = 1

(2a)2n(2n − 2)!

∞∑
m=0

(
cm(2n + 2m − 2)!

(4a)mm!(n + m − 1)!

)2 m∑
k=0

(m

k

)(
2k

k

)(
b

2c

)2k

Jφ,m,k,

Jφ,m,k =
∫ π

0
(sin2 φs)

k+1/2(cos2 φs)
m−k{1 − [(c2 − b2)/c2] cos2 φs}1/2 dφs.

Here we employ the substitution t = cos2 φs to derive

Jφ,m,k =
∫ 1

0
tm−k−1/2(1 − t)k{1 − [1 − (b/c)2]t}1/2 dt,
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which we again note is an integral form of the usual hypergeometric function and therefore

Jφ,m,k = 22k+1m!k!(2m − 2k)!

(m − k)!(2m + 1)!
F(−1/2,m − k + 1/2;m + 3/2; 1 − (b/c)2).

We note that the some of the factorial terms in this equation simplify which allows Jn to be
written more simply as

Jn = 2

(2a)2n(2n − 2)!

∞∑
m=0

(
cm(2n + 2m − 2)!

(4a)m(n + m − 1)!

)2 1

(2m + 1)!

×
m∑

k=0

(
2m − 2k

m − k

) (
2k

k

) (
b

c

)2k

×F(−1/2,m − k + 1/2;m + 3/2; 1 − (b/c)2).

This expression can now be evaluated with a numerical package or via a series expansion since
again we note that the argument is the square of the eccentricity e, and in those fullerenes
examined here, e is very close to zero.

Appendix G. Interaction with a tilting and axially centered spheroid

Here we derive the solution for the interaction energy Etta for a spheroid which is centered
on the origin and which is rotated about the x-axis by some arbitrary angle ψ . The rotation
produces the following parametric form of the spheroidal surface:

x = b cos θs sin φs, y = b sin θs sin φs cos ψ − c cos φs sin ψ,

z = c cos φs cos ψ + b sin θs sin φs sin ψ,

where −π < θs � π and 0 � φs � π , and therefore

ρ2 = b2 cos2 θs sin2 φs + (b sin θs sin φs cos ψ − c cos φs sin ψ)2

= µ − ν sin θs − ξ sin2 θs,

where µ, ν and ξ are defined by

µ = b2 + (c2 sin2 ψ − b2) cos2 φs, ν = 2bc sin ψ cos ψ sin φs cos φs,

ξ = b2 sin2 ψ sin2 φs.

Expanding ρ2m using the multinomial theorem gives

ρ2m =
m∑

p=0

m−p∑
q=0

(−1)p+q m!

p!q!(m − p − q)!
µm−p−qνpξq sinp+2q θs .

Therefore we define the θs integration as we have done in the previous appendices

Kθ,m =
m∑

p=0

m−p∑
q=0

(−1)p+q m!

p!q!(m − p − q)!
µm−p−qνpξq

∫ π

−π

sinp+2q θs dθs,

and we note that the integral is zero whenever p is odd and so we replace the p → 2p giving

Kθ,m =
�m/2�∑
p=0

m−2p∑
q=0

(−1)q
m!

(2p)!q!(m − 2p − q)!
µm−2p−qν2pξq

∫ π

−π

sin2(p+q) θs dθs,

where �x� signifies the largest integer not greater than x and we note that∫ π

−π

sin2(p+q) θs dθs = 2π

22p+2q

(
2(p + q)

p + q

)
.
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On expanding µm−2p−q using the binomial theorem we obtain

µm−2p−q =
m−2p−q∑

r=0

(
m − 2p − q

r

)
b2m−4p−2q−2r (c2 sin2 ψ − b2)r cos2r φs.

This allows us to write the interaction energy Etta for a tilting spheroid as

Etta = 16π3a2bcηtηs(−AK3 + BK6),

Kn = 1

(2a)2n(2n − 2)!

∞∑
m=0

[
bm(2n + 2m − 2)!

(4a)mm!(n + m − 1)!

]2

×
�m/2�∑
p=0

m−2p∑
q=0

(−1)q
(

2(p + q)

p + q

)
m!c2p sin2p+2q ψ cos2p ψ

(2p)!q!(m − 2p − q)!22qb2p

×
m−2p−q∑

r=0

(
m − 2p − q

r

) (
c2 sin2 ψ − b2

b2

)r

Kφ,

Kφ =
∫ π

0
cos2p+2r φs sin2p+2q+1 φs(1 − e2 cos2 φs)

1/2 dφs.

Making the substitution t = cos2 φs simplifies this last integral to

Kφ =
∫ 1

0
tp+r−1/2(1 − t)p+q(1 − e2t)1/2 dt.

We note that this Kφ is now in the integral form for the usual hypergeometric function
F(α, β; γ ; z), as described and can represented as

Kφ = 22p+2q+1 (2p + 2r)!(2p + q + r)!(p + q)!

(4p + 2q + 2r + 1)!(p + r)!

×F(−1/2, p + r + 1/2; 2p + q + r + 3/2; 1 − (b/c)2),

where we have used the Legendre duplication formula to express the coefficients in terms of
simple factorials.

Appendix H. Interaction with a lying and offset spheroid

In this appendix, we derive a solution for the case of the spheroid lying with its polar axis
parallel to the z-axis but offset from that axis by some distance, ε. Without loss of generality
we can assume that this displacement is in the positive x-direction and therefore the parametric
form of the spheroidal surface is given by

x = ε + b cos θs sin φs, y = b sin θs sin φs, z = c cos φs,

where −π < θs � π and 0 � φs � π , and therefore

ρ2 = (ε + b cos θs sin φs)
2 + b2 sin2 θs sin2 φs

= (ε + b sin φs)
2 − 4εb sin φs sin2(θs/2).

We now use the expression derived in appendix D to express the interaction energy Etlo for
the configuration of an infinite nanotube and an offset spheroidal fullerene with

Etlo = ηs

∫ π

0

∫ π

−π

Etp(ρ)b sin φs(b
2 cos2 φs + c2 sin2 φs)

1/2 dθs dφs,
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but as in appendix F the θs integration is by no means trivial and so we define this integral by

Lθ,m =
∫ π

−π

[(ε + b sin φs)
2 − 4εb sin φs sin2(θs/2)]m dθs.

By using the substitution t = sin2(θs/2) we can transform this integral into

Lθ,m = 2(ε + b sin φs)
2m

∫ 1

0
t−1/2(1 − t)−1/2

(
1 − 4εb sin φs

(ε + b sin φs)2
t)

)m

dt,

which is the integral form of the usual hypergeometric function, which allows us to express it
as

Lθ,m = 2π(ε + b sin φs)
2mF

(
−m, 1/2; 1; 4εb sin φs

(ε + b sin φs)2

)
.

Since the hypergeometric function is of the form F(α, β; 2β; z) it admits the quadratic
transformation given in Erdélyi et al [24, section 2.11, equation (31)], which yields

Lθ,m = 2πε2mF(−m,−m; 1; b2 sin2 φs/ε
2).

We note that the series representation of this function terminates and therefore on expressing
this as a series we obtain

Lθ,m = 2πε2m

m∑
k=0

[
(−m)k

k!

(
b sin φs

ε

)k
]2

.

We note that we can multiply the series term by (−1)2k and since k � m we can replace
(−1)k(−m)k = m!/(m − k)! which can then be combined with the other factorial term to
produce a binomial coefficient, which gives

Lθ,m = 2πε2m

m∑
k=0

[(m

k

) (
b sin φs

ε

)k
]2

.

Now taking the expression derived in appendix D we can give the interaction energy Etlo of
the offset spheroid as

Etlo = 16π3a2bcηtηs (−AL3 + BL6) ,

Ln = 1

(2a)2n(2n − 2)!

∞∑
m=0

(
εm(2n + 2m − 2)!

(4a)mm!(n + m − 1)!

)2 m∑
k=0

[(m

k

) (
b

ε

)k
]2

Lφ,k,

Lφ,k =
∫ π

0
(sin2 φs)

k+1/2{1 − [(c2 − b2)/c2] cos2 φs}1/2 dφs,

and we note Lφ,k = Jφ,k as evaluated in appendix E and therefore

Lφ,k = 22k+1(k!)2

(2k + 1)!
F(−1/2, 1/2; k + 3/2; 1 − (b/c)2).

We comment that as before the series expansion of this hypergeometric function converges
quickly for spheroids with small eccentricities. We also note that in the case of zero offset
ε = 0, then all terms in the k series go to zero except for k = m, the end result being the Etlo

solution collapses to precisely the axially centered solution Etla derived in appendix E.
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Appendix I. Interaction with a standing and offset spheroid

In this appendix, we examine the case of the spheroid in a standing orientation with an
additional offset from the z-axis by a distance ε. In this case, we cannot assume that the
displacement is in a particular direction without loss of generality. However since the spheroids
of interest (C70 and C80 fullerenes) are prolate, it is consistent to consider a displacement in the
direction of the polar axis of the spheroid, which we set as the y-direction, and the parametric
form of the spheroidal surface is given by

x = b cos θs sin φs, y = ε + c cos φs, z = b cos θs sin φs,

where −π < θs � π and 0 � φs � π , and therefore

ρ2 = b2 cos2 θs sin2 φs + (ε + c cos φs)
2 = (ε + c cos φs)

2(1 + λ2 cos2 θs),

where λ = b sin φs/(ε + c cos φs). So as before using the expression derived in appendix D
we express the interaction energy Etso for the configuration of a standing spheroid which is
offset by

Etso = ηs

∫ π

0

∫ π

−π

Etp(ρ)b sin φs(b
2 cos2 φs + c2 sin2 φs)

1/2 dθs dφs.

As before, neither of the integrations are trivial and we begin by defining the θs integration by

Mθ,m =
∫ π

−π

(1 + λ2 cos2 θs)
m dθs.

By using the substitution t = cos2 θs we transform this integral into the form

Mθ,m = 2
∫ 1

0
t−1/2(1 − t)−1/2(1 + λ2t)m dt,

which is in hypergeometric form, and this allows us to write

Mθ,m = 2πF(−m, 1/2; 1;−λ2).

In this case, the first argument α = −m and we can also express this as the degenerate series

Mθ,m = 2π

m∑
k=0

(−1)k
(−m)k(1/2)k

k!2
λ2k,

and by expressing the Pochhammer terms as binomials and expanding λ we finally obtain

Mθ,m = 2π

m∑
k=0

(m

k

) (
2k

k

) (
b

2

)2k (
sin φs

ε + c cos φs

)2k

.

This allows us to write the following expression for the interaction energy Etso as:

Etso = 16π3a2bcηtηs(−AM3 + BM6),

Mn = 1

(2a)2n(2n − 2)!

∞∑
m=0

[
(2n + 2m − 2)!

(4a)mm!(n + m − 1)!

]2 m∑
k=0

(m

k

) (
2k

k

) (
b

2

)2k

Mφ,k,

Mφ,k =
∫ π

0
(ε + c cos φs)

2m−2k sin2k+1 φs(1 − e2 cos2 φs)
1/2 dφs,

where e2 = 1 − (b/c)2 is the spheroidal eccentricity. Now we note that from the binomial
theorem

(ε + c cos φs)
2m−2k = ε2m−2k

2m−2k∑
�=0

(
2m − 2k

�

) (c

ε

)�

cos� φs,
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and hence we can write

Mφ,k = ε2m−2k

2m−2k∑
�=0

(
2m − 2k

�

) (c

ε

)�

M�
φ,k,

M�
φ,k =

∫ π

0
cos� φs sin2k+1 φs(1 − e2 cos2 φs)

1/2 dφs.

As has been previously encountered, M�
φ,k = 0 when � is odd. Therefore these terms can be

dropped from the summation by replacing � → 2� and hence

Mφ,k = ε2m−2k

m−k∑
�=0

(
2m − 2k

2�

) (c

ε

)2�

M�
φ,k,

M�
φ,k =

∫ π

0
cos2� φs sin2k+1 φs(1 − e2 cos2 φs)

1/2 dφs.

Now by employing the substitution t = cos2 φs we deduce that

M�
φ,k =

∫ 1

0
t�−1/2(1 − t)k(1 − e2t)1/2 dt,

which again is in the fundamental form for the usual hypergeometric function F(α, β; γ ; z),
with α = −1/2, β = � + 1/2, γ = k + l + 3/2 and z = e2, and therefore

M�
φ,k = 22k+1 (2�)!(k + �)!k!

(2k + 2� + 1)!�!
F(−1/2, � + 1/2; k + � + 3/2; e2).

Thus collecting all the terms together for Mn, we obtain

Mm = 2

(2a)2n(2n − 2)!

∞∑
m=0

[
εm(2n + 2m − 2)!

(4a)mm!(n + m − 1)!

]2

×
m∑

k=0

(m

k

) (
2k

k

) (
b

ε

)2k m−k∑
�=0

(2m − 2k)!(k + �)!k!

(2m − 2k − 2�)!(2k + 2� + 1)!�!

×
(c

ε

)2�

F (−1/2, � + 1/2; k + � + 3/2; e2),

and as before, we comment that this series expansion converges quickly for spheroids of small
eccentricities and when the offset ε = 0 then all the series terms vanish except for m = 0
which recovers the axially centered solution.

Appendix J. Interaction with a tilting and offset spheroid

In this appendix, we consider the case of a spheroid which is tilting by an angle ψ and offset
from the axis of the nanotube by a distance ε. As in the previous appendix the direction of the
offset cannot be assumed without loss of generality. However, as before, the natural direction
of offset is in the same direction as that of the tilt and so we assume that the spheroid is tilting
around the x-axis and the offset is in the y-direction. Therefore, the parametric form of the
spheroidal surface is given by

x = b cos θs sin φs, y = ε + b sin θs sin ψs cos ψ − c cos φs sin ψ,

z = c cos φs cos ψ + b sin θs sin ψs sin ψ,

where −π < θs � π and 0 � φs � π , and therefore

ρ2 = b2 cos2 θs sin2 φs + (ε + b sin θs sin ψs cos ψ − c cos φs sin ψ)2

= µ + ν sin θs − ξ sin2 θs,
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where µ, ν and ξ are given by

µ = b2 sin2 φs + (ε − c cos φs sin ψ)2, ν = 2b sin φs cos ψ(ε − c cos φs sin ψ),

ξ = b2 sin2 φs sin2 ψ.

Expanding ρ2m using the multinomial theorem we have

ρ2m =
m∑

p=0

m−p∑
q=0

(−1)qm!

p!q!(m − p − q)!
µm−p−qνpξq sinp+2q θs .

Now the θs integration is defined as

Nθ,m =
m∑

p=0

m−p∑
q=0

(−1)qm!

p!q!(m − p − q)!
µm−p−qνpξq

∫ π

−π

sinp+2q θs dθs,

we note that the integral is zero whenever p is odd. Therefore we can replace p → 2p giving

Nθ,m =
�m/2�∑
p=0

m−2p∑
q=0

(−1)qm!

(2p)!q!(m − 2p − q)!
µm−2p−qν2pξq

∫ π

−π

sin2p+2q θs dθs,

where �x� signifies the largest integer not greater than x and we note that∫ π

−π

sin2p+2q θs dθs = 2π

22p+2q

(
2(p + q)

p + q

)
.

We now expand µm−2p−q using the binomial theorem giving

µm−2p−q =
m−2p−q∑

r=0

(
m − 2p − q

r

)
(b sin φs)

2r (ε − c cos φs sin ψ)2m−4p−2q−2r ,

and continuing in the same way we expand the powers of (ε − c cos φs sin ψ) originating from
the µ and ν terms and which we denote by ω, using the binomial theorem thus,

ω = (ε − c cos φs sin ψ)2(m−p−q−r)

=
2(m−p−q−r)∑

s=0

(
2(m − p − q − r)

s

)
ε2(m−p−q−r)−s(c sin ψ cos φs)

s,

and we note that the φs integral terms equal zero when s is odd and therefore we can replace
s → 2s giving an effective ω� of

ω� =
m−p−q−r∑

s=0

(
2(m − p − q − r)

2s

)
ε2(m−p−q−r−s)(c sin ψ cos φs)

2s ,

This allows us to express the interaction energy Etto as

Etto = 16π3a2bcηtηs(−AN3 + BN6),

Nn = 1

(2a)2n(2n − 2)!

∞∑
m=0

[
εm(2n + 2m − 2)!

(4a)mm!(n + m − 1)!

]2

×
�m/2�∑
p=0

m−2p∑
q=0

(−1)qm!

(2p)!q!

(
2p + 2q

p + q

)(
b cos ψ

ε

)2p (
b sin ψ

2ε

)2q

×
m−2p−q∑

r=0

1

r!(m − 2p − q − r)!

(
b

ε

)2r
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×
m−p−q−r∑

s=0

(
2(m − p − q − r)

2s

)(
c sin ψ

ε

)2s

Nφ,

Nφ =
∫ π

0
cos2s φs sin2(p+q+r)+1 φs(1 − e2 cos2 φs)

1/2 dφs.

On making the substitution t = cos2 φs we obtain

Nφ =
∫ 1

0
t s−1/2(1 − t)p+q+r (1 − e2t)1/2 dt,

which is similar to those integrals encountered in previous appendices and can be expressed
in terms of the usual hypergeometric function as

Nφ = 22(p+q+r)+1 (2s)!(p + q + r)!(p + q + r + s)!

s![2(p + q + r + s) + 1]!

×F(−1/2, s + 1/2;p + q + r + s + 3/2; e2).
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